Abstract
The current paper presents an improvement of the Extreme Learning Machines for VISualization (ELMVIS+) nonlinear dimensionality reduction method. In this improved method, called ELMVIS+R, it is proposed to apply the originally unsupervised ELMVIS+ method for the regression problems, using target values to improve visualization results. It has been shown in previous work that the approach of adding supervised component for classification problems indeed allows to obtain better visualization results. To verify this assumption for regression problems, a set of experiments on several different datasets was performed. The newly proposed method was compared to the ELMVIS+ method and, in most cases, outperformed the original algorithm. Results, presented in this article, prove the general idea that using supervised components (target values) with nonlinear dimensionality reduction method like ELMVIS+ can improve both visual properties and overall accuracy.
Original language | English |
---|---|
Peer-reviewed scientific journal | Cognitive Computation |
Volume | 10 |
Issue number | 3 |
Pages (from-to) | 464-477 |
Number of pages | 14 |
ISSN | 1866-9956 |
DOIs | |
Publication status | Published - 22.12.2017 |
MoE publication type | A1 Journal article - refereed |
Keywords
- 512 Business and Management
- Nonlinear regression
- Machine Learning
- Artificial neural networks
- Extreme learning machines
- Nonlinear dimensionality reduction
- Cosine similarity