Mislabel Detection of Finnish Publication Ranks

Anton Akusok, Mirka Saarela, Tommi Kärkkäinen, Kaj-Mikael Björk, Amaury Lendasse

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Abstract

The paper proposes to analyze a data set of Finnish ranks of academic publication channels with Extreme Learning Machine (ELM). The purpose is to introduce and test recently proposed ELM-based mislabel detection approach with a rich set of features characterizing a publication channel. We will compare the architecture, accuracy, and, especially, the set of detected mislabels of the ELM-based approach to the corresponding reference results in Saarela, M., Kärkkäinen, T., Lahtonen, T., Rossi, T.: Expert-based versus citation-based ranking of scholarly and scientific publication channels. J. Informetrics 10(3), 693–718 (2016).
Original languageEnglish
Title of host publicationInternational Conference on Extreme Learning Machine: Proceedings of ELM-2017
Number of pages9
Place of PublicationCham
PublisherSpringer
Publication date17.10.2018
Pages240-248
ISBN (Print)978-3-030-01519-0
ISBN (Electronic)978-3-030-01520-6
DOIs
Publication statusPublished - 17.10.2018
MoE publication typeA4 Article in conference proceedings
Event2017 the 8th International Conference on Extreme Learning Machines (ELM) - Yantai, China
Duration: 04.10.201707.10.2017
http://www.ntu.edu.sg/home/egbhuang/elm2017/index.html

Publication series

NameProceedings in Adaptation, Learning and Optimization (PALO)
Volume10

Keywords

  • 512 Business and Management
  • ELM
  • Mislabel detection
  • Publication channel

Fingerprint

Dive into the research topics of 'Mislabel Detection of Finnish Publication Ranks'. Together they form a unique fingerprint.

Cite this