INFERENCE ON COINTEGRATION IN VECTOR AUTOREGRESSIVE MODELS

Projekt: Externt finansierat projekt

Projektinformation

Beskrivning

In the thesis we consider inference on cointegration in vector autoregressive (VAR) models. The thesis consists of an introduction and four papers. The first paper proposes a new test for cointegration in VAR models that is directly based on the eigenvalues of the least squares (LS) estimate of the autoregressive matrix. In the second paper we compare a small sample correction for the likelihood ratio (LR) test of cointegrating rank and the bootstrap. The simulation experiments show that the bootstrap works very well in practice and dominates the correction factor. The tests are applied to international stock prices data, and the finite sample performance of the tests are investigated by simulating the data. The third paper studies the demand for money in Sweden 1970-2000 using the I(2) model. In the fourth paper we re-examine the evidence of cointegration between international stock prices. The paper shows that some of the previous empirical results can be explained by the small-sample bias and size distortion of Johansen's LR tests for cointegration. In all papers we work with two data sets. The first data set is a Swedish money demand data set with observations on the money stock, the consumer price index, gross domestic product (GDP), the short-term interest rate and the long-term interest rate. The data are quarterly and the sample period is 1970(1)-2000(1). The second data set consists of month-end stock market index observations for Finland, France, Germany, Sweden, the United Kingdom and the United States from 1980(1) to 1997(2). Both data sets are typical of the sample sizes encountered in economic data, and the applications illustrate the usefulness of the models and tests discussed in the thesis.
StatusSlutfört
Gällande start-/slutdatum01.01.199931.12.2002

Fingeravtryck

Utforska forskningsämnen som berörs av detta projekt. Dessa etiketter genereras baserat på underliggande ansökningar/anslag. Tillsammans bildar de ett unikt fingeravtryck.