A Lagrange multiplier test for testing the adequacy of the constant conditional correlation GARCH model

Paul Catani, Timo Teräsvirta, Meiqun Yin

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

6 Citeringar (Scopus)

Sammanfattning

A Lagrange multiplier test for testing the parametric structure of a constant conditional correlation-generalized autoregressive conditional heteroskedasticity (CCC-GARCH) model is proposed. The test is based on decomposing the CCC-GARCH model multiplicatively into two components, one of which represents the null model, whereas the other one describes the misspecification. A simulation study shows that the test has good finite sample properties. We compare the test with other tests for misspecification of multivariate GARCH models. The test has high power against alternatives where the misspecification is in the GARCH parameters and is superior to other tests. The test is not greatly affected by misspecification in the conditional correlations and is therefore well suited for considering misspecification of GARCH equations.
OriginalspråkEngelska
Referentgranskad vetenskaplig tidskriftEconometric Reviews
Volym36
Nummer6-9
Sidor (från-till)599-621
Antal sidor23
ISSN0747-4938
DOI
StatusPublicerad - 2017
MoE-publikationstypA1 Originalartikel i en vetenskaplig tidskrift

Nyckelord

  • 112 Statistik
  • 511 Nationalekonomi

Fingeravtryck

Fördjupa i forskningsämnen för ”A Lagrange multiplier test for testing the adequacy of the constant conditional correlation GARCH model”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här