A methodology for developing evidence-based optimization models in humanitarian logistics

Hossein Baharmand*, Diego Vega, Matthieu Lauras, Tina Comes

*Motsvarande författare för detta arbete

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

The growing need for humanitarian assistance has inspired an increasing amount of academic publications in the field of humanitarian logistics. Over the past two decades, the humanitarian logistics literature has developed a powerful toolbox of standardized problem formulations to address problems ranging from distribution to scheduling or locations planning. At the same time, the humanitarian field is quickly evolving, and problem formulations heavily rely on the context, leading to calls for more evidence-based research. While mixed methods research designs provide a promising avenue to embed research in the reality of the field, there is a lack of rigorous mixed methods research designs tailored to translating field findings into relevant HL optimization models. In this paper, we set out to address this gap by providing a systematic mixed methods research design for HL problem in disasters response. The methodology includes eight steps taking into account specifics of humanitarian disasters. We illustrate our methodology by applying it to the 2015 Nepal earthquake response, resulting in two evidence-based HL optimization models.
OriginalspråkEngelska
Referentgranskad vetenskaplig tidskriftAnnals of Operations Research
Antal sidor33
ISSN0254-5330
DOI
StatusPublicerad - 23.05.2022
MoE-publikationstypA1 Originalartikel i en vetenskaplig tidskrift

Nyckelord

  • 512 Företagsekonomi

Styrkeområden och områden med hög potential (AoS och AoHP)

  • AoHP: Humanitär och samhällslogistik

Fingeravtryck

Fördjupa i forskningsämnen för ”A methodology for developing evidence-based optimization models in humanitarian logistics”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här