Brute-force Missing Data Extreme Learning Machine for Predicting Huntington's Disease

Anton Akusok, Emil Eirola, Kaj-Mikael Björk, Yoan Miche, Hans Johnson, Amaury Lendasse

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

4 Citeringar (Scopus)

Sammanfattning

This paper presents a novel procedure to train Extreme Learning Machine models on datasets with missing values. In effect, a separate model is learned to classify every sample in the test set, however, this is accomplished in an efficient manner which does not require accessing the training data repeatedly. Instead, a sparse structure is imposed on the input layer weights, which enables calculating the necessary statistics in the training phase. An application to predicting the progression of Huntington's disease from brain scans is presented. Experimental comparisons show promising results equivalent to the state of the art in machine learning with incomplete data.

OriginalspråkEngelska
Titel på värdpublikation10th ACM International Conference on PErvasive Technologies Related to Assistive Environments, PETRA 2017
Antal sidor4
VolymPart F128530
FörlagACM - Association for Computing Machinery
Utgivningsdatum21.06.2017
Sidor189-192
ISBN (elektroniskt)978-1-4503-5227-7
DOI
StatusPublicerad - 21.06.2017
MoE-publikationstypA4 Artikel i en konferenspublikation
Evenemang10th ACM International Conference on PErvasive Technologies Related to Assistive Environments, PETRA 2017 - Island of Rhodes, Grekland
Varaktighet: 21.06.201723.06.2017

Nyckelord

  • 512 Företagsekonomi

Fingeravtryck

Fördjupa i forskningsämnen för ”Brute-force Missing Data Extreme Learning Machine for Predicting Huntington's Disease”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här