Combined nonlinear visualization and classification: ELMVIS++C

Andrey Gritsenko, Anton Akusok, Yoan Miche, Kaj-Mikael Björk, Stephen Baek, Amaury Lendasse

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

2 Citeringar (Scopus)

Sammanfattning

This paper presents an improvement of the ELMVIS+ method that is proposed for fast nonlinear dimensionality reduction. The ELMVIS++C has an additional supervised learning component compared to ELMVIS+, which is originally an unsupervised method as like the majority of the other dimensionality reduction method. This component prevents samples under the same class being separated apart from each other. In this improved method, the importance of the supervised component can be further tuned to have different level of influence. The test results on four datasets indicate that the proposed improvement not only maintains the performance of ELMVIS+, but also is extremely beneficial for certain applications where the visualization of the data in relation with the class becomes an important issue.
OriginalspråkEngelska
Titel på gästpublikation 2016 International Joint Conference on Neural Networks (IJCNN)
FörlagIEEE
Utgivningsdatum2016
ISBN (tryckt) 978-1-5090-0621-2
ISBN (elektroniskt)978-1-5090-0620-5 , 978-1-5090-0619-9
DOI
StatusPublicerad - 2016
MoE-publikationstypA4 Artikel i en konferenspublikation
Evenemang 2016 International Joint Conference on Neural Networks (IJCNN) - Vancouver, Kanada
Varaktighet: 24.07.201629.07.2016

Nyckelord

  • 512 Företagsekonomi

Fingeravtryck Fördjupa i forskningsämnen för ”Combined nonlinear visualization and classification: ELMVIS++C”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här