Sammanfattning
Data with missing values are very common in practice, yet many machine learning models are not designed to handle incomplete data. As most machine learning approaches can be formulated in terms of distance between samples, estimating these distances on data with missing values provides an effective way to use such models. This paper present a procedure to estimate the distances using the Extreme Learning Machine. Experimental comparison shows that the proposed approach achieves competitive accuracy with other methods on standard benchmark datasets.
Originalspråk | Engelska |
---|---|
Titel på värdpublikation | International Conference on Extreme Learning Machine: Proceedings of ELM-2017 |
Antal sidor | 7 |
Utgivningsort | Cham |
Förlag | Springer |
Utgivningsdatum | 17.10.2018 |
Sidor | 203-209 |
ISBN (tryckt) | 978-3-030-01519-0 |
ISBN (elektroniskt) | 978-3-030-01520-6 |
DOI | |
Status | Publicerad - 17.10.2018 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | 2017 the 8th International Conference on Extreme Learning Machines (ELM) - Yantai, Kina Varaktighet: 04.10.2017 → 07.10.2017 http://www.ntu.edu.sg/home/egbhuang/elm2017/index.html |
Publikationsserier
Namn | Proceedings in Adaptation, Learning and Optimization (PALO) |
---|---|
Volym | 10 |
Nyckelord
- 512 Företagsekonomi