ELM Clustering – Application to Bankruptcy Prediction

Anton Akusok, David Veganzones, Kaj-Mikael Björk, Eric Séverin, Philippe du Jardin, Amaury Lendasse, Yoan Miche

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

This paper presents a new clustering technique based on Ex-treme Learning Machine (ELM). This clustering technique can incorpo-rate a priori knowledge (of an expert) to define the optimal structure of the clustering; for example, the number of points in each cluster. Using ELM, the clustering can be rewritten as a Traveling Salesman Problem and solved by a Genetic Algorithm. This efficient and fast clustering technique is used in order to analyze and predict financial distress of French companies.
OriginalspråkEngelska
Titel på värdpublikationInternational work-conference on Time Series (ITISE)
Utgivningsdatum2014
StatusPublicerad - 2014
MoE-publikationstypA4 Artikel i en konferenspublikation

Nyckelord

  • 512 Företagsekonomi

Fingeravtryck

Fördjupa i forskningsämnen för ”ELM Clustering – Application to Bankruptcy Prediction”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här