ELM-SOM+: A continuous mapping for visualization

Renjie Hu*, Karl Ratner, Edward Ratner, Yoan Miche, Kaj Mikael Björk, Amaury Lendasse

*Motsvarande författare för detta arbete

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

10 Citeringar (Scopus)

Sammanfattning

This paper presents a novel dimensionality reduction technique based on ELM and SOM: ELM-SOM+. This technique preserves the intrinsic quality of Self-Organizing Map (SOM): it is nonlinear and suitable for big data. It also brings continuity to the projection using two Extreme Learning Machine (ELM) models, the first one to perform the dimensionality reduction and the second one to perform the reconstruction. ELM-SOM+ is tested successfully on nine diverse datasets. Regarding reconstruction error, the new methodology shows considerable improvement over SOM and brings continuity.

OriginalspråkEngelska
Referentgranskad vetenskaplig tidskriftNeurocomputing
Volym365
Sidor (från-till)147-156
Antal sidor10
ISSN0925-2312
DOI
StatusPublicerad - 06.11.2019
MoE-publikationstypA1 Originalartikel i en vetenskaplig tidskrift

Nyckelord

  • 512 Företagsekonomi

Fingeravtryck

Fördjupa i forskningsämnen för ”ELM-SOM+: A continuous mapping for visualization”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här