Sammanfattning
This paper presents a novel dimensionality reduction technique based on ELM and SOM: ELM-SOM+. This technique preserves the intrinsic quality of Self-Organizing Map (SOM): it is nonlinear and suitable for big data. It also brings continuity to the projection using two Extreme Learning Machine (ELM) models, the first one to perform the dimensionality reduction and the second one to perform the reconstruction. ELM-SOM+ is tested successfully on nine diverse datasets. Regarding reconstruction error, the new methodology shows considerable improvement over SOM and brings continuity.
Originalspråk | Engelska |
---|---|
Referentgranskad vetenskaplig tidskrift | Neurocomputing |
Volym | 365 |
Sidor (från-till) | 147-156 |
Antal sidor | 10 |
ISSN | 0925-2312 |
DOI | |
Status | Publicerad - 06.11.2019 |
MoE-publikationstyp | A1 Originalartikel i en vetenskaplig tidskrift |
Nyckelord
- 512 Företagsekonomi