Sammanfattning
This paper presents a novel dimensionality reduction technique: ELM-SOM. This technique preserves the intrinsic quality of Self-Organizing Maps (SOM): It is nonlinear and suitable for big data. It also brings continuity to the projection using two Extreme Learning Machine (ELM) models, the first one to perform the dimensionality reduction and the second one to perform the reconstruction. ELM-SOM is tested successfully on six diverse datasets. Regarding reconstruction error, ELM-SOM is comparable to SOM while bringing continuity.
Originalspråk | Engelska |
---|---|
Titel på värdpublikation | 2018 International Joint Conference on Neural Networks, IJCNN 2018 - Proceedings |
Volym | 2018-July |
Förlag | Institute of Electrical and Electronics Engineers Inc. |
Utgivningsdatum | 10.10.2018 |
Artikelnummer | 8489268 |
ISBN (elektroniskt) | 9781509060146 |
DOI | |
Status | Publicerad - 10.10.2018 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | 2018 International Joint Conference on Neural Networks, IJCNN 2018 - Rio de Janeiro, Brasilien Varaktighet: 08.07.2018 → 13.07.2018 |
Nyckelord
- 512 Företagsekonomi