Export sales forecasting using artificial intelligence

Vahid Sohrabpour, Pejvak Oghazi*, Reza Toorajipour, Ali Nazarpour

*Motsvarande författare för detta arbete

Forskningsoutput: TidskriftsbidragArtikelPeer review

2 Citeringar (Scopus)

Sammanfattning

Sales forecasting is important in production and supply chain management. It affects firms’ planning, strategy, marketing, logistics, warehousing and resource management. While traditional time series forecasting methods prevail in research and practice, they have several limitations. Causal forecasting methods are capable of predicting future sales behavior based on relationships between variables and not just past behavior and trends. This research proposes a framework for modeling and forecasting export sales using Genetic Programming, which is an artificial intelligence technique derived from the model of biological evolution. Analyzing an empirical case of an export company, an export sales forecasting model is suggested. Moreover, a sales forecast for a period of six weeks is conducted, the output of which is compared with the real sales data. Finally, a variable sensitivity analysis is presented for the causal forecasting model.
OriginalspråkEngelska
Artikelnummer120480
Referentgranskad vetenskaplig tidskriftTechnological Forecasting and Social Change
Volym163
Antal sidor10
ISSN0040-1625
DOI
StatusPublicerad - 2021
MoE-publikationstypA1 Originalartikel i en vetenskaplig tidskrift

Nyckelord

  • 512 Företagsekonomi

Fingeravtryck

Fördjupa i forskningsämnen för ”Export sales forecasting using artificial intelligence”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här