TY - JOUR
T1 - Extreme Learning Machines for VISualization+R
T2 - Mastering Visualization with Target Variables
AU - Gritsenko, Andrey
AU - Akusok, Anton
AU - Baek, Stephen
AU - Miche, Yoan
AU - Lendasse, Amaury
PY - 2017/12/22
Y1 - 2017/12/22
N2 - The current paper presents an improvement of the Extreme Learning Machines for VISualization (ELMVIS+) nonlinear dimensionality reduction method. In this improved method, called ELMVIS+R, it is proposed to apply the originally unsupervised ELMVIS+ method for the regression problems, using target values to improve visualization results. It has been shown in previous work that the approach of adding supervised component for classification problems indeed allows to obtain better visualization results. To verify this assumption for regression problems, a set of experiments on several different datasets was performed. The newly proposed method was compared to the ELMVIS+ method and, in most cases, outperformed the original algorithm. Results, presented in this article, prove the general idea that using supervised components (target values) with nonlinear dimensionality reduction method like ELMVIS+ can improve both visual properties and overall accuracy.
AB - The current paper presents an improvement of the Extreme Learning Machines for VISualization (ELMVIS+) nonlinear dimensionality reduction method. In this improved method, called ELMVIS+R, it is proposed to apply the originally unsupervised ELMVIS+ method for the regression problems, using target values to improve visualization results. It has been shown in previous work that the approach of adding supervised component for classification problems indeed allows to obtain better visualization results. To verify this assumption for regression problems, a set of experiments on several different datasets was performed. The newly proposed method was compared to the ELMVIS+ method and, in most cases, outperformed the original algorithm. Results, presented in this article, prove the general idea that using supervised components (target values) with nonlinear dimensionality reduction method like ELMVIS+ can improve both visual properties and overall accuracy.
KW - 512 Business and Management
KW - Nonlinear regression
KW - Machine Learning
KW - Artificial neural networks
KW - Extreme learning machines
KW - Nonlinear dimensionality reduction
KW - Cosine similarity
UR - http://www.scopus.com/inward/record.url?scp=85038609895&partnerID=8YFLogxK
U2 - 10.1007/s12559-017-9537-6
DO - 10.1007/s12559-017-9537-6
M3 - Article
AN - SCOPUS:85038609895
SN - 1866-9956
VL - 10
SP - 464
EP - 477
JO - Cognitive Computation
JF - Cognitive Computation
IS - 3
ER -