Extreme Learning Machines for VISualization+R: Mastering Visualization with Target Variables

Andrey Gritsenko*, Anton Akusok, Stephen Baek, Yoan Miche, Amaury Lendasse

*Motsvarande författare för detta arbete

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

The current paper presents an improvement of the Extreme Learning Machines for VISualization (ELMVIS+) nonlinear dimensionality reduction method. In this improved method, called ELMVIS+R, it is proposed to apply the originally unsupervised ELMVIS+ method for the regression problems, using target values to improve visualization results. It has been shown in previous work that the approach of adding supervised component for classification problems indeed allows to obtain better visualization results. To verify this assumption for regression problems, a set of experiments on several different datasets was performed. The newly proposed method was compared to the ELMVIS+ method and, in most cases, outperformed the original algorithm. Results, presented in this article, prove the general idea that using supervised components (target values) with nonlinear dimensionality reduction method like ELMVIS+ can improve both visual properties and overall accuracy.

OriginalspråkEngelska
Referentgranskad vetenskaplig tidskriftCognitive Computation
Volym10
Nummer3
Sidor (från-till)464-477
Antal sidor14
ISSN1866-9956
DOI
StatusPublicerad - 22.12.2017
MoE-publikationstypA1 Originalartikel i en vetenskaplig tidskrift

Nyckelord

  • 512 Företagsekonomi

Fingeravtryck

Fördjupa i forskningsämnen för ”Extreme Learning Machines for VISualization+R: Mastering Visualization with Target Variables”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här