Sammanfattning
The paper proposes a new variant of a decision tree, called an Extreme Learning Tree. It consists of an extremely random tree with non-linear data transformation, and a linear observer that provides predictions based on the leaf index where the data samples fall. The proposed method outperforms linear models on a benchmark dataset, and may be a building block for a future variant of Random Forest.
Originalspråk | Engelska |
---|---|
Titel på värdpublikation | International Conference on Extreme Learning Machine: Proceedings of ELM-2017 |
Antal sidor | 5 |
Utgivningsort | Cham |
Förlag | Springer |
Utgivningsdatum | 17.10.2018 |
Sidor | 181-185 |
ISBN (tryckt) | 978-3-030-01519-0 |
ISBN (elektroniskt) | 978-3-030-01520-6 |
DOI | |
Status | Publicerad - 17.10.2018 |
MoE-publikationstyp | A4 Artikel i en konferenspublikation |
Evenemang | 2017 the 8th International Conference on Extreme Learning Machines (ELM) - Yantai, Kina Varaktighet: 04.10.2017 → 07.10.2017 http://www.ntu.edu.sg/home/egbhuang/elm2017/index.html |
Publikationsserier
Namn | Proceedings in Adaptation, Learning and Optimization (PALO) |
---|---|
Volym | 10 |
Nyckelord
- 512 Företagsekonomi