Finding Originally Mislabels with MD-ELM

Anton Akusok, David Veganzones, Yoan Miche, Eric Séverin, Amaury Lendasse

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

5 Citeringar (Scopus)

Sammanfattning

This paper presents a method which aims at detecting misla-beled samples, with a practical example in the field of bankruptcy predic-tion. Mislabeled samples are found in many classification problems and can bias the training of the desired classifier. This paper is proposing a new method based on Extreme Learning Machine (ELM) which allows for identification of the most probable mislabeled samples. Two datasets are used in order to validate and test the proposed methodology: a toy exam-ple (XOR problem) and a real dataset from corporate finance (bankruptcy prediction).
OriginalspråkEngelska
Titel på gästpublikationESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
Utgivningsdatum2014
DOI
StatusPublicerad - 2014
MoE-publikationstypA4 Artikel i en konferenspublikation

Nyckelord

  • 512 Företagsekonomi

Fingeravtryck Fördjupa i forskningsämnen för ”Finding Originally Mislabels with MD-ELM”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här