Generating insights through data preparation, visualization, and analysis: Framework for combining clustering and data visualization techniques for low-cardinality sequential data

Svetlozar Nestorov, Boris Jukić, Nenad Jukić*, Abhishek Sharma, Sippo Rossi

*Huvudförfattare för detta arbete

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

11 Citeringar (Scopus)

Sammanfattning

In this paper, we introduce a novel approach for identifying and testing relationships and patterns on the types of sequential data that are broadly present in a number of different real-world scenarios and environments. The proposed two-phase framework combines data preparation, data visualization and clustering techniques in an innovative way. The first phase of the framework explores the large amount of sequential data in stages that can be undertaken iteratively. Those stages include data preparation, counting and value-based ordering, distribution visualization, and subsequence length determination, confirmation and re-visualization. The second phase of the framework explores sequence differences, based on motifs, between data cohorts that are created using descriptive attributes, and visualizes the changes over time and different attribute values. To illustrate the analytical power of the proposed framework, we present a comprehensive example that applies the framework on a large formally-maintained research data set collected and managed by the US Census Bureau. The framework, and the presented example, utilize visualization as an analytics tool and not just a presentation accessory.

OriginalspråkEngelska
Artikelnummer113119
Referentgranskad vetenskaplig tidskriftDecision Support Systems
Volym125
ISSN0167-9236
DOI
StatusPublicerad - 08.2019
MoE-publikationstypA1 Originalartikel i en vetenskaplig tidskrift

Nyckelord

  • 512 Företagsekonomi

Fingeravtryck

Fördjupa i forskningsämnen för ”Generating insights through data preparation, visualization, and analysis: Framework for combining clustering and data visualization techniques for low-cardinality sequential data”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här