Predicting Huntington’s Disease: Extreme Learning Machine with Missing Values

Emil Eirola, Anton Akusok, Kaj-Mikael Björk, Hans Johnson, Amaury Lendasse

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

Problems with incomplete data and missing values are common and important in real-world machine learning scenarios, yet often underrepresented in the research field. Particularly data related to healthcare tends to feature missing values which must be handled properly, and ignoring any incomplete samples is not an acceptable solution. The Extreme Learning Machine has demonstrated excellent performance in a variety of machine learning tasks, including situations with missing values. In this paper, we present an application to predict the onset of Huntington’s disease several years in advance based on data from MRI brain scans. Experimental results show that such prediction is indeed realistic with reasonable accuracy, provided the missing values are handled with care. In particular, Multiple Imputation ELM achieves exceptional prediction accuracy.
OriginalspråkEngelska
Titel på värdpublikationProceedings of ELM-2016
Antal sidor12
UtgivningsortCham
FörlagSpringer
Utgivningsdatum26.05.2017
Sidor195-206
ISBN (tryckt)978-3-319-57420-2
ISBN (elektroniskt)978-3-319-57421-9
DOI
StatusPublicerad - 26.05.2017
MoE-publikationstypA4 Artikel i en konferenspublikation
Evenemang2016 the 7th International Conference on Extreme Learning Machines (ELM) - Marina Bay Sands, Singapore
Varaktighet: 13.12.201615.12.2016

Publikationsserier

Namn Proceedings in Adaptation, Learning and Optimization (PALO)
Volym9

Nyckelord

  • 512 Företagsekonomi

Fingeravtryck

Fördjupa i forskningsämnen för ”Predicting Huntington’s Disease: Extreme Learning Machine with Missing Values”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här