Testing Collinearity of Vector Time Series

Tucker S. McElroy, Agnieszka Jach

Forskningsoutput: TidskriftsbidragArtikelVetenskapligPeer review

Sammanfattning

We investigate the collinearity of vector time series in the frequency domain, by examining the rank of the spectral density matrix at a given frequency of interest. Rank reduction corresponds to collinearity at the given frequency. When the time series is nonstationary and has been differenced to stationarity, collinearity corresponds to co-integration at a particular frequency. We examine rank through the Schur complements of the spectral density matrix, testing for rank reduction via assessing the positivity of these Schur complements, which are obtained from a nonparametric estimator of the spectral density. New asymptotic results for the test statistics are derived under the fixed bandwidth ratio paradigm; they diverge under the alternative, but under the null hypothesis of collinearity the test statistics converge to a non-standard limiting distribution. Subsampling is used to obtain the limiting null quantiles. A simulation study and an empirical illustration for 6-variate time series data are provided.
OriginalspråkEngelska
Referentgranskad vetenskaplig tidskriftThe Econometrics Journal
Volym22
Utgåva2
Sidor (från-till)97-116
Antal sidor20
ISSN1368-4221
DOI
StatusPublicerad - 29.01.2019
MoE-publikationstypA1 Originalartikel i en vetenskaplig tidskrift

Nyckelord

  • 512 Företagsekonomi

Fingeravtryck Fördjupa i forskningsämnen för ”Testing Collinearity of Vector Time Series”. Tillsammans bildar de ett unikt fingeravtryck.

  • Citera det här