Validating Untrained Human Annotations Using Extreme Learning Machines

Thomas Forss, Leonardo Espinosa-Leal*, Anton Akusok, Amaury Lendasse, Kaj-Mikael Björk

*Motsvarande författare för detta arbete

Forskningsoutput: Kapitel i bok/rapport/konferenshandlingKonferensbidragVetenskapligPeer review

Sammanfattning

We present a process for validating and improving annotations made by untrained humans using a two-step machine learning algorithm. The initial validation algorithm is trained on a high quality annotated subset of the data that the untrained humans are asked to annotate. We continue by using the machine learning algorithm to predict other samples that are also annotated by the humans and test several approaches for joining the algorithmic annotations with the human annotations, with the intention of improving the performance beyond using either approach individually. We show that combining human annotations with the algorithmic predictions can improve the accuracy of the annotations.
OriginalspråkEngelska
Titel på värdpublikationProceedings of ELM2019
RedaktörerJiuwen Cao, Chi Man Vong, Yoan Miche, Amaury Lendasse
Antal sidor10
UtgivningsortCham
FörlagSpringer
Utgivningsdatum2021
Sidor89-98
ISBN (tryckt)978-3-030-58988-2
ISBN (elektroniskt)978-3-030-58989-9
DOI
StatusPublicerad - 2021
MoE-publikationstypA4 Artikel i en konferenspublikation

Publikationsserier

NamnProceedings in Adaptation, Learning and Optimization
Volym14
ISSN (tryckt)2363-6084
ISSN (elektroniskt)2363-6092

Nyckelord

  • 113 Data- och informationsvetenskap

Fingeravtryck

Fördjupa i forskningsämnen för ”Validating Untrained Human Annotations Using Extreme Learning Machines”. Tillsammans bildar de ett unikt fingeravtryck.

Citera det här